This paper presents a novel direct power control (DPC) strategy based on an optimized sector division for a three-phase coupled inductor-based bipolar output active rectifier (TCIBAR) applied in more electric aircraft (MEA). First, based on the instantaneous power theory, the power model of the TCIBAR is built in the synchronous rotating coordinate system. Second, to implement the hysteresis power control of TCIBAR without causing the runaway of the zero-sequence current in the three-phase coupled inductor (TCI), a set of new voltage vectors that have the same zero-sequence voltage (ZSV) component are synthesized and adopted in the proposed DPC strategy. Third, by quantitatively analyzing the effect of the new synthesized voltage vectors on the power variation of TCIBAR, an optimized sector division method is proposed to improve the accuracy of power control and reduce the phase current harmonics in TCIBAR. Finally, to maintain the voltage balance of the bipolar dc ports in TCIBAR, voltage balance control is studied in the proposed DPC strategy. The proposed DPC strategy is researched on an experimental platform of TCIBAR, and the results show that the proposed DPC strategy is feasible and has good static and dynamic performance.