The characterization of individual nanoparticles in a liquid constitutes a critical challenge for the environmental, material, and biological sciences. To detect nanoparticles, electronic approaches are especially desirable owing to their compactness and lower costs. While electronic detection in the form of resistive-pulse sensing has enabled the acquisition of geometric properties of various analytes, impedimetric measurements to obtain dielectric signatures of nanoparticles have scarcely been reported. To explore this orthogonal sensing modality, we developed an impedimetric sensor based on a microwave resonator with a nanoscale sensing gap surrounding a nanopore built on a 220 nm silicon nitride membrane. The microwave resonator has a coplanar waveguide configuration with a resonance frequency of approximately 6.6 GHz. The approach of single nanoparticles near the sensing region and their translocation through the nanopores induced sudden changes in the impedance of the structure. The impedance changes, in turn, were picked up by the phase response of the microwave resonator. We worked with 100 and 50 nm polystyrene nanoparticles to observe single-particle events. Our current implementation was limited by the nonuniform electric field at the sensing region. This work provides a complementary sensing modality for nanoparticle characterization, where the dielectric response, rather than ionic current, determines the signal.
Read full abstract