Coal fly ash (FA) and polyacrylamide (PAM) are two common amendments for improving hydraulic properties of sandy soil. However, their interaction effect on infiltration-runoff processes in sandy soil has been scarcely reported. In this study, FA and anionic PAM granules were mixed thoroughly with a 0–0.2 m sandy soil layer at FA rates of 0%, 10%, and 15% (w/w soil), and PAM rates of 0%, 0.01%, and 0.02% (w/w soil) along with each FA rate. A simulated rainfall laboratory experiment (slope gradient of 10°, rainfall intensity of 1.5 mm/min) was conducted. During the rainfall, the cumulative runoff yield increased while the average infiltration rate decreased with increasing FA and PAM rates. A higher FA rate of 15% and varying PAM rates resulted in a prominent increase in cumulative sediment yield. After the rainfall, the two-dimensional distribution of water content retained in the soil profile reflected that both FA and PAM increased the water retention capacity of sandy soil, and the effect became more obvious at higher FA and PAM rates. The possible mechanism for the effect of FA and PAM on inhibiting water infiltration during the rainfall and retaining water in the soil layer after the rainfall is attributed to the filling of pores of the coarse soil particles by fine-sized FA particles and flocculation function and binding action of PAM.