In this paper, we explore the quantum properties of three-flavor neutrino propagating in a Schwarzschild metric. It is found that the different strength of gravitational effects are obtained by adjusting the magnitude of GM\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathrm GM$$\\end{document} arising in the oscillation phase. Using the weak field approximations, we show that the gravitational effects can make the entanglement oscillates over a large rage when GM=5.1×108Km\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{GM}=5.1\ imes 10^8 \\, \ extrm{Km}$$\\end{document} and GM=7×107Km\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{GM}=7\ imes 10^7 \\, \ extrm{Km}$$\\end{document}, respectively, Moreover, for GM=4.8×108Km\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{GM}=4.8\ imes 10^8 \\, \ extrm{Km}$$\\end{document} and GM=9.3×107Km\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{GM}=9.3\ imes 10^7 \\, \ extrm{Km}$$\\end{document}, the suppression of the entanglement can be observed due to the gravitational effects. Meanwhile, in this case, the gravitational effects also make the distribution of entanglement tighter through investing the entanglement complete monogamy relation. Furthermore, we examine the gravitational effects on the violation of the Svetlichny inequality to study the nonlocality of the system. It is shown that when GM=6×108Km\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{GM}=6\ imes 10^8 \\, \ extrm{Km}$$\\end{document} and GM=7×107Km\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{GM}=7\ imes 10^7 \\, \ extrm{Km}$$\\end{document}, the gravitational effects make the Svetlichny parameters always greater than 4, implying that the genuine tripartite nonlocality of the system is always present. However, the gravitational effects also restrain the violation of the Svetlichny to make the regions of the absence of nonlocality increase. The gravitational effects on the monogamy property of nonlocality lies in the change of the effective bound of the maximum bipartite nonlocality of the neutrinos system. Therefore, our investigations may be helpful to understanding of quantumness of the neutrinos system in curved space-time.