AbstractThe OWLeS IOP2b lake-effect case is simulated using the Weather Research and Forecasting (WRF) Model with a horizontal grid spacing of 148 m (WRF-LES mode). The dynamics and microphysics of the simulated high-resolution snowband and a coarser-resolution band from the parent nest (1.33-km horizontal grid spacing) are compared to radar and aircraft observations. The Ice Spheroids Habit Model with Aspect-ratio Evolution (ISHMAEL) microphysics is used, which predicts the evolution of ice particle properties including shape, maximum diameter, density, and fall speed. The microphysical changes within the band that occur when going from 1.33-km to 148-m grid spacing are explored. Improved representation of the dynamics at higher resolution leads to a better representation of the microphysics of the snowband compared to radar and aircraft observations. Stronger updrafts in the high-resolution grid produce higher ice number concentrations and produce ice particles that are more heavily rimed and thus more spherical, smaller (in terms of mean maximum diameter), and faster falling. These changes to the ice particle properties in the high-resolution grid limit the production of aggregates and improve reflectivity compared to observations. Graupel, observed in the band at the surface, is simulated in the strongest convective updrafts, but only at the higher resolution. Ultimately, the duration of heavy precipitation just onshore from the collapse of convection is better predicted in the high-resolution domain compared to surface and radar observations.