Experiments and analysis have been carried out to investigate the effects of Al and (Al,Ge) doping on the microstructure and thermoelectric properties of polycrystalline higher manganese silicide (HMS) samples, which were prepared by solid-state reaction, ball milling, and followed by spark plasma sintering. It has been found that Al doping effectively increases the hole concentration, which leads to an increase in the electrical conductivity and power factor. By introducing the second dopant Ge into Al-doped HMS, the electrical conductivity is increased, and the Seebeck coefficient is decreased as a result of further increased hole concentration. The peak power factor is found to occur at a hole concentration between 1.8 × 1021 and 2.2 × 1021 cm−3 measured at room temperature. The (Al,Ge)-doped HMS samples show lower power factors owing to their higher hole concentrations. The mobility of Mn(Al0.0035GeySi0.9965-y)1.8 with y = 0.035 varies approximately as T−3/2 above 200 K, suggesting acoustic phonon sca...