AbstractCarbon foam materials are currently used in several industrial and engineering applications due to their outstanding properties. The properties of carbon foam can be altered through the manufacturing processes applied in specific applications. In this paper, we collected and analyzed four samples manufactured by CFOAM and one sample developed by Ohio University (OU) to understand the behaviour of this material and determine its properties. We utilized advanced techniques to experimentally measure and determine the following properties: pore size and volume, porosity, specific surface area, mass, density, and thermal conductivity. Among the samples, the low‐porosity CFOAM (CF35) and the OU sample exhibited higher specific surface areas and densities compared to the others. However, CF35 demonstrated the highest thermal conductivity, while OU displayed the lowest. As a result, CF35 emerges as the optimal choice for applications requiring high‐rate heat transfer, while the remaining CFOAM samples are well‐suited for lightweight applications. Thus, OU foam proves to be a highly suitable candidate for insulation applications such as building sidewalls.
Read full abstract