Abstract This is a review of the worthwhile, innovative theories and concepts in electrogravitics and electrokinetics that could yield tremendous technological and economic dividends in both investment dollars and potential applications for future generations. Electrogravitics is most commonly associated with the 1918 work by Professor Nipher followed by the 1928 British patent #300,311 of T. Townsend Brown, the 1952 Special Inquiry File #24-185 of the Office of Naval Research into the “Electro-Gravity Device of Townsend Brown” and two widely circulated 1956 Aviation Studies Ltd. Reports on “Electrogravitics Systems” and “The Gravitics Situation.” By definition, electrogravitics historically has had a purported relationship to gravity or the object's mass, as well as the applied voltage. An analysis of the 90-year old science of electrogravitics (or electrogravity) necessarily includes an analysis of electrokinetics. Electrokinetics, on the other hand, is more commonly associated with many patents of T. Townsend Brown as well as Agnew Bahnson, starting with the 1960 US patent #2,949,550 entitled, “Electrokinetic Apparatus.” Electrokinetics, which often involves a capacitor and dielectric, has virtually no relationship that can be connected with mass or gravity. The Army Research Lab has recently issued a report on electrokinetics, analyzing the force on an asymmetric capacitor, while NASA has received three patents on the same design topic. To successfully describe and predict the purported motion in the direction of the positive terminal of the capacitor, it is desirable to use the classical electrokinetic field and force equations for the specific geometry involved. This initial review also suggests directions for further confirming measurements. This paper also reviews the published electrokinetic experiments by the Army Research Lab by Bahder and Fazi, California State University at Fullerton work by Woodward and Mahood, Erwin Saxl, and others.
Read full abstract