High gravity (high-g) combustion can significantly increase flame propagation speed, thereby potentially shortening the axial length of aero-engines and increasing their thrust-to-weight ratio. In this study, we utilized the large eddy simulation model to investigate the combustion characteristics and flame morphology evolution of premixed propane–air flames in a channel with a backward-facing step. The study reveals that both the increase in centrifugal force and flow velocity can enhance pressure fluctuations during combustion and increase the turbulence intensity. The presence of centrifugal force promotes the occurrence of Rayleigh–Taylor instability (RTI) between hot and cold fluids. The combined effects of RTI and Kelvin–Helmholtz instability (KHI) enhance the disturbance between hot and cold fluids, shorten the fuel combustion time, and intensify the dissipation of large-scale vortices. The increase in fluid flow velocity can raise the flame front’s hydrodynamic stretch rate, thereby enhancing the turbulence level during combustion to a certain extent and increasing the fuel consumption rate. When a strong centrifugal force is applied, the global flame propagation speed can be more than doubled. Within a certain range, the increase in high-g field strength can enhance the intensity of RTI and accelerate the transition of RTI to the nonlinear stage.