Abstract
Flame interaction with obstacles can affect significantly its behavior due to flame front wrinkling, changes in the flame front surface area, and momentum and heat losses. Experimental and theoretical studies in this area are primarily connected with flame acceleration and deflagration to detonation transition. This work is devoted to studying laminar flames propagating in narrow gaps between closely spaced parallel plates (Hele–Shaw cell) in the presence of internal obstacles separating the rectangular channel in two parts (closed and open to the atmosphere) connected by a small hole. The focus of the research is on the penetration of flames through the hole to the adjacent channel part. Experiments are performed for fuel-rich propane–air mixtures; combustion is initiated by spark ignition near the far end of the closed volume. Additionally, numerical simulations are carried out to demonstrate the details of flame behavior prior to and after penetration into the adjacent space. The results obtained may be applicable to various microcombustors; they are also relevant to fire and explosion safety where flame propagation through leakages may promote fast fire spread.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.