1. On the basis of a dilatancy model of the plasticity of a rock mass [1] elastic-plastic relationships between the stress and strain are deduced for complete and incomplete plasticity. 2. Dilatancy laws are obtained for cylindrical and spherical symmetry. 3. Cylindrical and spherical wave propagation is considered by solving the dynamics equations within the framework of the model mentioned. 4. The laws obtained for the stress wave propagation velocity and the damping of the maximal amplitudes in the wave are in agreement with those in [3] and correspond to test results. 5. A piecewise-continuous approximation of the variable A is indicated that agrees with experiments. 6. The applicability of the model to the description of rock mass properties under dynamic loading is shown.
Read full abstract