Predicting propagation cascades is crucial for understanding information propagation in social networks. Existing methods always focus on structure or order of infected users in a single cascade sequence, ignoring the global dependencies of cascades and users, which is insufficient to characterize their dynamic interaction preferences. Moreover, existing methods are poor at addressing the problem of model robustness. To address these issues, we propose a predication model named DropMessage Hypergraph Attention Networks, which constructs a hypergraph based on the cascade sequence. Specifically, to dynamically obtain user preferences, we divide the diffusion hypergraph into multiple subgraphs according to the time stamps, develop hypergraph attention networks to explicitly learn complete interactions, and adopt a gated fusion strategy to connect them for user cascade prediction. In addition, a new drop immediately method DropMessage is added to increase the robustness of the model. Experimental results on three real-world datasets indicate that proposed model significantly outperforms the most advanced information propagation prediction model in both MAP@k and Hits@K metrics, and the experiment also proves that the model achieves more significant prediction performance than the existing model under data perturbation.
Read full abstract