Purpose The purpose of this paper is to investigate the propagation of Rayleigh-type surface wave in a porothermoelastic half-space. This study addresses the impact of surface pores characteristics, specific heat, temperature, porosity, wave frequency, types of rock frame and types of pore fluids on the propagation characteristics of Rayleigh-type wave. Design/methodology/approach A secular equation is derived, based on the potential functions for both sealed and open surface pores boundary conditions at the stress-free insulated surface of the porothermoelastic medium. Findings Propagation characteristics (velocity, attenuation and particle motions) of Rayleigh wave are significantly influenced by boundary conditions (opened or sealed surface pores) and thermal characteristics of materials. Furthermore, the path of particles throughout the propagation of Rayleigh-type waves is identified as elliptical. Originality/value A numerical example is considered to examine the effect of thermal characteristics of materials on the existing Rayleigh wave’s propagation characteristics. Graphical analysis is used to evaluate the behavior of particle motion (such as elliptical) at both open and sealed surface of the porothermoelastic medium.
Read full abstract