Silica nanowires provide strong mode confinement in a cylindrical silica-core/air-cladding geometry and serve a model system for studying nonlinear propagation of short optical pulses inside fibers. We report on the fiber diameter dependence of the supercontinuum generated by femtosecond laser pulses in silica fiber tapers with average diameters in the range of 200 nm to 1200 nm. We observe a strong diameter-dependence of the spectral broadening, which can be attributed to the fiber's diameter-dependent dispersion and nonlinearity. The short interaction length (less than 20 mm) and the low energy threshold for supercontinuum generation (about 1 nJ) make tapered fibers with diameters between 400 nm and 800 nm an ideal source of coherent white-light source in nanophotonics.