A stabilized stochastic finite element implementation for the natural convection system of equations under Boussinesq assumptions with uncertainty in inputs is considered. The stabilized formulations are derived using the variational multiscale framework assuming a one-step trapezoidal time integration rule. The stabilization parameters are shown to be functions of the time-step size. Provision is made for explicit tracking of the subgrid-scale solution through time. A support-space/stochastic Galerkin approach and the generalized polynomial chaos expansion (GPCE) approach are considered for input–output uncertainty representation. Stochastic versions of standard Rayleigh–Bènard convection problems are used to evaluate the approach. It is shown that for simulations around critical points, the GPCE approach fails to capture the highly non-linear input uncertainty propagation whereas the support-space approach gives fairly accurate results. A summary of the results and findings is provided.
Read full abstract