Microstructure has a significant effect on material's integrity and in a heterogeneous weld microstructure the discontinuities affect the brittle fracture initiation and propagation and determine the fracture toughness. The knowledge of brittle fracture initiation mechanisms in high-Mn/high-Ni welds is limited. The brittle fracture initiation behaviour of the decommissioned Barsebäck Unit 2 reactor pressure vessel (RPV) welds of high-Mn/high-Ni weld metal from three different locations, the RPV head and the beltline regions, were investigated and compared with specimens from the surveillance program with high fluence. Systematic fractography has been performed on impact and fracture toughness specimens and the main features of the brittle fracture initiation in the component weld are presented and discussed. Two main types of initiators are identified as the weakest links to initiate the cleavage fracture and the initiation mechanism is found independent from the operation condition. The high-fluence surveillance specimens have a larger amount of intergranular cracking. The cleavage fracture initiation appears to be independent of the operation conditions but dependent on the welding process and metallurgical features. The findings aid in the development of improved material-property correlations which will result in better computational tools for predicting aging of welds based on microstructure.