We present a new approach that demonstrates the deflection and guiding of relativistic electron beams over curved paths by means of the magnetic field generated in a plasma-discharge capillary. The active bending plasma (ABP) represents a promising solution that has been recently demonstrated with a proof of principle experiment. An ABP device consists of a curved capillary where large discharges (of the order of kA) are propagated in a plasma channel. Unlike conventional bending magnets, in which the field is constant over the bending plane, in the ABP, the azimuthal magnetic field generated by the discharge grows with the distance from the capillary axis. This features makes the device less affected by the beam chromatic dispersion so that it can be used to efficiently guide particle beams with non-negligible energy spreads. The study we present in the following aims to provide a theoretical basis of the main ABP features by presenting an analytical description of a single-particle motion and rms beam dynamics. The retrieved relationships are verified by means of numerical simulations and provide the theoretical matrix formalism needed to completely characterize such a new transport device. Published by the American Physical Society 2024
Read full abstract