The present study is focused on the construction and characterization of the morphology and biocompatibility of polysaccharide multilayered microcapsules (PMC) composed of natural polyelectrolytes (chitosan/alginate/hyaluronic acid), and on the effect of graphene oxide (GO) incorporation in the polymer matrix. The insertion of GO in the polymer matrix is an innovative and still evolving strategy used to modify the properties of the polyelectrolyte microcapsules. We have fabricated a number of hybrid GO-polysaccharide multilayered capsules by layer-by-layer assembling technique onto a CaCO3 core, followed by core decomposition in mild conditions. Hybrid microcapsules with different composition were constructed by varying the number or localization of the incorporated GO-layers. It was found that the thickness of the hybrid microcapsules, evaluated by atomic force microscopy, decreases after incorporation of GO nanosheets in the polymer matrix. Analysis of the viability and proliferation of fibroblasts after incubation with hybrid PMC revealed pronounced concentration-dependent cytotoxic and antiproliferative effect. Based on the results, we can conclude that the hybrid multilayered microcapsules made of natural polysaccharides and graphene oxide could be used for biomedical applications.
Read full abstract