Diethoxymethane ((CH3CH2O)2CH2, DEM) is a promising carbon-neutral fuel. DEM is a diether or acetal with a molecular structure similar to oxymethylene ethers (CH3O–(CH2O)n–CH3, OMEn). Thus, DEM can be expected to have a similar combustion behavior to OMEs, reducing harmful emissions such as NOx and particulate matter (PM) in internal combustion engines. From both experimental and kinetic modeling, fundamental studies on DEM are scarce in the literature. More studies are required to gain a detailed insight into the oxidation kinetics of DEM. Laminar burning velocity (LBV) is a critical property that allows a detailed assessment of the potential application of DEM in combustion devices. Unfortunately, the literature on the LBV of DEM is limited. Therefore, in this study we have investigated the LBV of DEM using two reactors for the first time, namely a heat flux burner and a combustion chamber. The experimental data is reported for equivalence ratio between 0.7 and 1.7, initial temperatures of 368–423 K, and initial pressure of 1–5 bar. In addition, we developed a detailed kinetic model extending our recent work of Shrestha et al. (Combust. Flame. 246 (2022) 112,426) to characterize the combustion behavior of DEM utilizing the new experimental data from this work and the literature data. Our model performs remarkably well in capturing the newly measured LBV experimental data over various experimental conditions. We found that DEM and dimethoxy methane (DMM) have similar values of LBVs (within ±1.5 cm/s) for a given condition, which indicates that intermediate chemistry governs the flame chemistry. Despite DEM being a larger molecule that is expected to have slightly lower LBVs than DMM, its effect on the measured values of LBVs is negligible. Finally, we experimentally measured NOx formation in DEM flame for the first time. The stochiometric flame has the highest NOx formation. The proposed model predicted the equivalence ratio dependence of NOx nicely. However, it overestimates the NOx formation for stoichiometric DEM/air mixtures by ∼30 %. The model suggests that the thermal NO formation route is favored at lean and stochiometric conditions. In contrast, the prompt NO formation route is enhanced for rich mixtures.
Read full abstract