Background/Objectives: Plant metallothioneins (MTs) are low-molecular-weight proteins involved in heavy metal binding and response to stress conditions. This work aimed to analyse canola (Brassica napus L.) MTs (BnMT1-4) response to salinity and plant interaction with bacteria. Methods: (1) We tested germination and canola growth and development in the presence of sodium chloride and bacteria Serratia plymuthica; (2) We analysed phytohormones content using LC-MS/MS; (3) We identified in silico cis-regulatory elements in promoters of BnMT1-4 genes; and (4) we investigated BnMT1-4 genes’ expression in B. napus. Results: Under saline conditions, canola germination and plant growth were notably inhibited, whereas inoculation of seeds with S. plymuthica significantly stimulated the analysed physiological traits of B. napus. The content of auxin, abscisic acid, jasmonates, gibberellins, and salicylic acid in B. napus was significantly affected by salinity and modulated by S. plymuthica presence. The promoter regions of the BnMT1-4 genes contain numerous regulatory elements controlled by light, hormones, and various stresses. Interestingly, the expression of BnMT1-3 genes was down-regulated under salt stress, while BnMT4 transcript levels increased strongly at the highest salt concentrations with and without S. plymuthica present. Conclusions: The results show that BnMT genes are differently affected by salinity and bacteria S. plymuthica and significantly correlate with particular phytohormones content in canola tissues, confirming the diversified functions of MTs in plant responses to changing environment.
Read full abstract