This study investigates spoilage bacteria's impact on lipid metabolism in sturgeon fillets using UHPLC-Q-Orbitrap-MS/MS-based untargeted lipidomic analysis. A total of 4041 lipid molecules across five classes and 42 subclasses were identified, including glycerophospholipids (GPs, 50.88%), glycerolipids (GLs, 36.08%), sphingolipids (SPs, 10.47%), fatty acyls (FAs, 2.45%), and sterol lipids (STs, 0.12%). Aeromonas sobria, a specific spoilage bacterium, reduced GPs and FAs while increasing GLs, SPs, and STs via extracellular lipases and esterases. Acinetobacter albensis, the dominant bacterium, mainly elevated SPs and FAs. Their interaction promoted lipid metabolism and oxidation while producing volatile organic compounds (VOCs). Ethyl isobutyrate, ethyl propionate, isobutyl formate, pentan-2-one, propan-2-one, 2-butanone, 3-methyl-3-buten-1-ol, and dimethyl sulfide were mainly associated with Acinetobacter albensis, while 1-hexanol, 1-pentanol, 1-penten-3-ol, 1-hydroxypropan-2-one, 3-methyl-1-butanol, 2-methylbutanal, 3-hydroxy-2-butanone, and propionaldehyde were mainly related to Aeromonas sobria. This work unveils the mechanism of lipid transformation in sturgeon fillets during refrigerated storage, offering insights for aquatic products quality control.
Read full abstract