The Programmed Death-1 (PD-1) receptor delivers inhibitory checkpoint signals to activated T cells upon binding to its ligands PD-L1 and PD-L2 expressed on antigen-presenting cells and cancer cells, resulting in suppression of T-cell effector function and tumor immune evasion. Clinical antibodies blocking the interaction between PD-1 and PD-L1 restore the cytotoxic function of tumor antigen-specific T cells, yielding durable objective responses in multiple cancers. This report describes the preclinical characterization of REGN2810, a fully human hinge-stabilized IgG4(S228P) high-affinity anti-PD-1 antibody that potently blocks PD-1 interactions with PD-L1 and PD-L2. REGN2810 was characterized in a series of binding, blocking, and functional cell-based assays, and preclinical in vivo studies in mice and monkeys. In cell-based assays, REGN2810 reverses PD-1-dependent attenuation of T-cell receptor signaling in engineered T cells and enhances responses of human primary T cells. To test the in vivo activity of REGN2810, which does not cross-react with murine PD-1, knock-in mice were generated to express a hybrid protein containing the extracellular domain of human PD-1, and transmembrane and intracellular domains of mouse PD-1. In these mice, REGN2810 binds the humanized PD-1 receptor and inhibits growth of MC38 murine tumors. As REGN2810 binds to cynomolgus monkey PD-1 with high affinity, pharmacokinetic and toxicologic assessment of REGN2810 was performed in cynomolgus monkeys. High doses of REGN2810 were well tolerated, without adverse immune-related effects. These preclinical studies validate REGN2810 as a potent and promising candidate for cancer immunotherapy. Mol Cancer Ther; 16(5); 861-70. ©2017 AACR.
Read full abstract