To conduct a comprehensive bibliometric analysis of artificial intelligence (AI) and its subfields as well as radiomics in Radiology, Nuclear Medicine, and Medical Imaging (RNMMI). Web of Science was queried for relevant publications in RNMMI and medicine along with their associated data from 2000 to 2021. Bibliometric techniques utilised were co-occurrence, co-authorship, citation burst, and thematic evolution analyses. Growth rate and doubling time were also estimated using log-linear regression analyses. According to the number of publications, RNMMI (11,209; 19.8%) was the most prominent category in medicine (56,734). USA (44.6%) and China (23.1%) were the two most productive and collaborative countries. USA and Germany experienced the strongest citation bursts. Thematic evolution has recently exhibited a significant shift toward deep learning. In all analyses, the annual number of publications and citations demonstrated exponential growth, with deep learning-based publications exhibiting the most prominent growth pattern. Estimated continuous growth rate, annual growth rate, and doubling time of the AI and machine learning publications in RNMMI were 26.1% (95% confidence interval [CI], 12.0-40.2%), 29.8% (95% CI, 12.7-49.5%), and 2.7years (95% CI, 1.7-5.8), respectively. In the sensitivity analysis using data from the last 5 and 10years, these estimates ranged from 47.6 to 51.1%, 61.0 to 66.7%, and 1.4 to 1.5years. This study provides an overview of AI and radiomics research conducted mainly in RNMMI. These results may assist researchers, practitioners, policymakers, and organisations in gaining a better understanding of both the evolution of these fields and the importance of supporting (e.g., financial) these research activities. • In terms of the number of publications on AI and ML, Radiology, Nuclear Medicine, and Medical Imaging was the most prominent category compared to the other categories related to medicine (e.g., Health Policy & Services, Surgery). • All evaluated analyses (i.e., AI, its subfields, and radiomics), based on the annual number of publications and citations, demonstrated exponential growth, with decreasing doubling time, which indicates increasing interest from researchers, journals, and, in turn, the medical imaging community. • The most prominent growth pattern was observed in deep learning-based publications. However, the further thematic analysis demonstrated that deep learning has been underdeveloped but highly relevant to the medical imaging community.