Unipolar brush cells are a class of interneurons in the granular layer of the mammalian cerebellum that receives excitatory mossy fiber synaptic input in the form of a giant glutamatergic synapse. Previously, it was shown that the unipolar brush cell axon branches within the granular layer, giving rise to large terminals. Single mossy fiber stimuli evoke a prolonged burst of firing in unipolar brush cells, which would be distributed to postsynaptic targets within the granular layer. Knowledge of the ultrastructure of the unipolar brush cell terminals and of the cellular identity of its postsynaptic targets is required to understand how unipolar brush cells contribute to information processing in the cerebellar circuit. To investigate the unipolar brush cell axon and its targets, unipolar brush cells were patch-clamped in fresh parasagittal slices from rat cerebellar vermis with electrodes filled with Lucifer Yellow and Biocytin, and examined by confocal fluorescence and electron microscopy. Biocytin was localized with diaminobenzidine chromogen or gold-conjugated, silver-intensified avidin. Light microscopic examination revealed a single thin axon emanating from the unipolar brush cell soma that gave rise to 2–3 axon collaterals terminating in mossy fiber-like rosettes in the granular layer, typically within a few hundred μm of the soma. In some cases, axon collaterals crossed the white matter within the same folium before terminating in the adjacent granular layer. Electron microscopic examination of serial ultrathin sections revealed that proximal unipolar brush cell axons and axon collaterals were unmyelinated and devoid of synaptic contacts. However, the rosette-shaped enlargements of each collateral formed the central component of glomeruli where they were surrounded by dendrites of granule cells and/or other unipolar brush cells, with which they formed asymmetric synaptic contacts. A long-latency repetitive burst of polysynaptic activity was observed in granule cells in this cerebellar region following white matter stimulation. The unipolar brush cell axons, therefore, form a system of cortex-intrinsic mossy fibers. The results indicate that synaptic excitation of unipolar brush cells by mossy fibers will drive a large population of granule cells, and thus will contribute a powerful form of distributed excitation within the basic circuit of the cerebellar cortex.