Gut microbiota dysbiosis is linked to vascular wall disease, but the mechanisms by which gut microbiota cross-talk with the host vascular cells remain largely unknown. Shikimic acid (SA) is a biochemical intermediate synthesized in plants and microorganisms, but not mammals. Surprisingly, recent metabolomic profiling data demonstrate that SA is detectable in human and murine blood. In this study, analyzing data from germ-free rats, we provide evidence in support of SA as a bona fide gut microbiota-derived metabolite, emphasizing its biological relevance. Since vascular cells are the first cells exposed to circulating metabolites, in this study, we examined, for the first time, the effects and potential underlying molecular mechanisms of SA on vascular smooth muscle cell (VSMC) proliferation and migration, which play a key role in occlusive vascular diseases, such as post-angioplasty restenosis and atherosclerosis. We found that SA inhibits the proliferation and migration of human coronary artery SMCs. At the molecular level, unexpectedly, we found that SA activates, rather than inhibits, multiple pro-mitogenic signaling pathways in VSMCs, such as ERK1/2, AKT, and mTOR/p70S6K. Conversely, we found that SA activates the anti-proliferative AMP-activated protein kinase (AMPK) in VSMCs, a key cellular energy sensor and regulator. However, loss-of-function experiments demonstrate that AMPK does not mediate the inhibitory effects of SA on VSMC proliferation. In conclusion, these studies demonstrate that a microbiota-derived metabolite, SA, inhibits VSMC proliferation and migration in vitro and prompt further evaluation of the possible underlying molecular mechanisms and the potential protective role in VSMC-related vascular wall disease in vivo.