BackgroundIdiopathic pulmonary fibrosis (IPF) is a progressive disorder with poor prognosis. The treatment options for IPF are very limited. Gambogic acid (GA) has anticancer effect and anti-proliferative activity which is extracted from a dried yellow resin of the Garcinia hanburyi Hook.f. [Clusiaceae (Guttiferae)] in Southeast Asia. However, the anti-fibrotic activities of GA have not been previously investigated. MethodsIn this study, the effects of GA on TGF-β1-mediated epithelial-mesenchymal transition (EMT) in A549 cells and endothelial–mesenchymal transition (EndoMT) in human pulmonary microvascular endothelial cells (HPMECs), on the proliferation of human lung fibroblasts (HLF-1) were investigated in vitro, and on bleomycin (BLM)-induced pulmonary fibrosis was investigated in vivo. ResultsIn TGF-β1 stimulated A549 cells, treatment with GA resulted in a reduction of EMT with a decrease in vimentin and p-Smad3 and an increase in E-cadherin instead. In TGF-β1 stimulated HPMECs, treatment with GA resulted in a reduction of EndoMT with a decrease in vimentin, and an increase in VE-cadherin instead. In the hypoxic HPMECs, treatment with GA reduced Vasohibin-2 (VASH-2), whereas increased VASH-1. In TGF-β1 stimulated HLF-1, treatment with GA reduced HLF-1 proliferation with a decrease in platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF-2) expressions. In vivo, treatment with GA for 2 weeks resulted in an amelioration of the BLM-induced pulmonary fibrosis in rats with a lower VASH-2. Instead, it was observed a higher VASH-1 expression at early stage of fibrosis at 1mg/kg, with reductions of the pathological score, collagen deposition, α-SMA, PDGF and FGF-2 expressions at fibrotic stage at 0.5mg/kg and 1mg/kg. ConclusionIn summary, GA reversed EMT and EndoMT, as well as HLF-1 proliferation in vitro and prevented pulmonary fibrosis in vivo by modulating VASH-2/VASH-1 and suppressing the TGF-β1/Smad3 pathway.
Read full abstract