Colorectal cancer (CRC) is a common and deadly tumor. FK506-binding protein 5 (FKBP5) is associated with some cancers, but the role of FKBP5 in CRC is not clear. The present study aimed to reveal the relationship between FKBP5 and CRC and to uncover the roles of FK506 in CRC. In total, 96 CRC patients were recruited. Survival analysis was conducted using the Kaplan-Meier method and COX regression analyses. Bioinformatics analyses were performed to explore the functions of FKBP5. The mechanisms of FKBP5 and the roles of FK506 in CRC progression were clarified by immunohistochemistry, MTS, scratch assay, transwell and flow cytometric analyses via in vitro and in vivo experiments. FKBP5 was overexpressed in 77 cancer tissues compared to that in matched normal tissues, and the overall survival rate of these patients was relatively shorter. Bioinformatics analyses showed that FKBP5 regulates proliferation, invasion, migration, epithelial-mesenchymal transition and nuclear factor-kappa B (NF-κB) signaling. The upregulation or downregulation of FKBP5 dramatically increases or decreases the proliferation, invasion and migration abilities of CRC cells. The expression of NF-κB, inhibitor B kinase α, matrix metalloproteinase-2 and metalloproteinase-9 positively correlated with FKBP5. FK506 inhibits the progression of CRC via the FKBP5/NF-κB signaling pathway. Our study identified a regulatory role for FKBP5 in CRC progression. Therefore, targeting FKBP5 may provide a novel treatment approach for CRC. FK506 can inhibit the progression of CRC by restraining the FKBP5/NF-κB signaling pathway and is expected to become a new drug for the treatment of CRC.
Read full abstract