Let Pm(C) be the complex projective space of dimension m. In a previous paper [2] we have provedTHEOREM A. Let f be a Kaehlerian immersion of a connected, complete Kaehler manifold Mn of dimension n into Pm(C). If the image f(τ) of each geodesic τ in Mn lies in a complex projective line P1(C) of Pm(C), then f(Mn) is a complex projective subspace of Pm(C), and f is totally geodesic.