The main challenge of the European steel industry for the next decade is the steel production transformation process. Many steel producers aim to avoid their CO2 emissions by substituting the CO2‐intensive blast furnace/basic oxygen furnace route by a gas‐based direct reduced iron (DRI) process combined with an electric smelting process. Thus, the well‐known latent hydraulic granulated blast furnace slag (GBS) will vanish step by step. For more than 140 years, this slag has been used as a supplementary cementitious material due to its clinker reduction potential and from there its CO2 reduction potential for the cement and concrete production. Moreover, slag cements offer some special technical advantages. Whereas the solid‐state DRI process itself does not generate any slag, the different electric smelting processes will produce liquid steel or “electric” pig iron, respectively, together with very different types of slags. However, specific slag/metal ratios, resulting slag volumes, chemical and mineralogical composition, and physical properties of the new slags are yet unknown. Therefore, their cementitious and environmental properties are also still unknown. Different current and scheduled projects aim mainly to enable the different types of new slags to substitute GBS to continue the successful cross‐industrial cooperation between steel and cement industry.