Age-related macular degeneration (AMD) is the leading cause of legal blindness in the industrialized world. AMD is characterized by accumulation of extracellular deposits, namely drusen, along with progressive degeneration of photoreceptors and adjacent tissues. AMD is a multifactorial disease encompassing a complex interplay between ageing, environmental risk factors and genetic susceptibility. Chronic inflammation, lipid deposition, oxidative stress and impaired extracellular matrix maintenance are strongly implicated in AMD pathogenesis. However, the exact interactions of pathophysiological events that culminate in drusen formation and the associated degeneration processes remain to be elucidated. Despite tremendous advances in clinical care and in unravelling pathophysiological mechanisms, the unmet medical need related to AMD remains substantial. Although there have been major breakthroughs in the treatment of exudative AMD, no efficacious treatment is yet available to prevent progressive irreversible photoreceptor degeneration, which leads to central vision loss. Compelling progress in high-resolution retinal imaging has enabled refined phenotyping of AMD in vivo. These insights, in combination with clinicopathological and genetic correlations, have underscored the heterogeneity of AMD. Hence, our current understanding promotes the view that AMD represents a disease spectrum comprising distinct phenotypes with different mechanisms of pathogenesis. Hence, tailoring therapeutics to specific phenotypes and stages may, in the future, be the key to preventing irreversible vision loss.
Read full abstract