Interleukin-4 (IL-4) controls cell growth and immune system regulation in tumorigenesis and can inhibit the growth of colon cancer cell lines, but the possible mechanism is unclear. In this study, we investigated the possible mechanism of IL-4 in colorectal cancer (CRC) through in vitro experiments. CRC cells received treatment with IL-4 (50 ng/mL), investigating the suppressor of cytokine signaling 1 (SOCS1)-related mechanism underlying the role of IL-4 in the progression and immunosuppression of CRC. The malignant processes of CRC cells and CD8+T cell-mediated immune response in CRC cells were determined by CCK-8, Transwell, wound healing, and flow cytometry assays. Programmed death ligand 1 (PD-L1), SOCS1 expressions, and c-Jun N-terminal kinase (JNK) activation in CRC cells were analyzed by quantitative reverse transcription polymerase chain reaction and/or Western blot. IL-4 repressed the malignant processes, yet promoted the apoptosis of CRC cells. Besides, IL-4 downregulated PD-L1 level, upregulated SOCS1 level, and restrained JNK activation in CRC cells, while enhancing CRC cell-killing effect of CD8+T cells. IL-4-induced effects on the aforementioned malignant processes of CRC cells and the killing effect of CD8+T cells toward CRC cells were all reversed when SOCS1 was knocked down in the CRC cells. IL-4 downregulates PD-L1 level via SOCS1 upregulation-induced JNK deactivation to enhance antitumor immunity in in vitro CRC. The study provides a theoretical basis for the clinical application of IL-4 in antitumor immunity in CRC.