BackgroundOvarian cancer greatly threatens the general health of women worldwide. Implementation of predictive prognostic biomarkers aids in ovarian cancer management.MethodsUsing online databases, the general expression profile, target-disease associations, and interaction network of PAWR were explored. To identify the role of PAWR in ovarian cancer, gene correlation analysis, survival analysis, and combined analysis of drug responsiveness and PAWR expression were performed. The predictive prognostic value of PAWR was further validated in clinical samples.ResultsPAWR was widely expressed in normal and cancer tissues, with decreased expression in ovarian cancer tissues compared with normal tissues. PAWR was associated with various cancers including ovarian cancer. PAWR formed a regulatory network with a group of proteins and correlated with several genes, which were both implicated in ovarian cancer and drug responsiveness. High PAWR expression denoted better survival in ovarian cancer patients (OS: HR = 0.84, P = 0.0077; PFS, HR = 0.86, P = 0.049). Expression of PAWR could predict platinum responsiveness in ovarian cancer and there was a positive correlation between PAWR gene effect and paclitaxel sensitivity. In 12 paired clinical samples, the cancerous tissues exhibited significantly lower PAWR expression than matched normal fallopian tubes. The predictive prognostic value of PAWR was maintained in a cohort of 50 ovarian cancer patients.ConclusionsHigh PAWR expression indicated better survival and higher drug responsiveness in ovarian cancer patients. PAWR could be exploited as a predictive prognostic biomarker in ovarian cancer.
Read full abstract