Disulfidoptosis is an unconventional form of programmed cell death that distinguishes itself from well-established cell death pathways like ferroptosis, pyroptosis, and necroptosis. Initially, we conducted a single-cell analysis of the GSE131907 dataset from the GEO database to identify disulfidoptosis-related genes (DRGs). We utilized differentially expressed DRGs to classify TCGA samples with an unsupervised clustering algorithm. Prognostic models were built using Cox regression and LASSO regression. Two DRG-related clusters (C1 and C2) were identified based on the DEGs from single-cell sequencing data analysis. In comparison to C1, C2 exhibited significantly worse overall prognosis, along with lower expression levels of immune checkpoint genes (ICGs) and chemoradiotherapy sensitivity-related genes (CRSGs). Furthermore, C2 displayed a notable enrichment in metabolic pathways and cell cycle-associated mechanisms. C2 was also linked to the development and spread of tumors. We created a prognostic risk model known as the DRG score, which relies on the expression levels of five DRGs. Patients were categorized into high-risk and low-risk groups depending on their DRG score, with the former group being linked to a poorer prognosis and higher TMB score. Moreover, the DRG score displayed significant correlations with CRSGs, ICGs, the tumor immune dysfunction and exclusion (TIDE) score, and chemotherapeutic sensitivity. Subsequently, we identified a significant correlation between the DRG score and monocyte macrophages. Additionally, crucial DRGs were additionally validated using qRT-PCR. Our new DRG score can predict the immune landscape and prognosis of LUAD, serving as a reference for immunotherapy and chemotherapy.