Pituitary homogenates (FPH) provoke a cascade of responses in the amphibian ovarian follicle, culminating in progesterone biosynthesis and oocyte maturation (GVBD). Calcium may play an important role as an intracellular second messenger in regulating these physiological responses. Experiments were carried out on cultured, isolated follicles of Rana pipiens to assess the effects of varying extracellular calcium on follicular progesterone accumulation and oocyte maturation. In hormonally unstimulated follicles, an increase in extracellular Ca2+ alone produced a significant increase in progesterone in methanol extracts of follicles after 4 hours of culture, and in some cases also provoked oocyte maturation assessed after 24 hours of culture. In no case did elevated Ca2+ alone stimulate maximal progesterone accumulation as compared with FPH-stimulated follicles, although the time-course of accumulation was similar. The calcium ionophore, A-23187, similarly increased progesterone accumulation in a dose-dependent manner when introduced in amphibian Ringer's (1.35 mM Ca2+), but inhibited progesterone elevation caused by increasing calcium concentrations in the culture media and FPH stimulation. Depleting free calcium from the culture medium with graded doses of the chelator EGTA decreased FPH-induced progesterone accumulation and inhibited FPH- and progesterone-induced GVBD. The calcium channel blocker, verapamil, also inhibited FPH-induced progesterone accumulation and GVDB in a dose-dependent manner, while having no effect on progesterone-induced meiotic resumption. These data strongly implicate intracellular calcium levels regulating progesterone production by ovarian follicle cells and subsequent oocyte maturation.