PurposeTo investigate the influence of vehicle operation speed, curve geometry parameters and rail profile parameters on wheel–rail creepage in high-speed railway curves and propose a multi-parameter coordinated optimization strategy to reduce wheel–rail contact fatigue damage.Design/methodology/approachTaking a small-radius curve of a high-speed railway as the research object, field measurements were conducted to obtain track parameters and wheel–rail profiles. A coupled vehicle-track dynamics model was established. Multiple numerical experiments were designed using the Latin Hypercube Sampling method to extract wheel-rail creepage indicators and construct a parameter-creepage response surface model.FindingsKey service parameters affecting wheel–rail creepage were identified, including the matching relationship between curve geometry and vehicle speed and rail profile parameters. The influence patterns of various parameters on wheel–rail creepage were revealed through response surface analysis, leading to the establishment of parameter optimization criteria.Originality/valueThis study presents the systematic investigation of wheel–rail creepage characteristics under multi-parameter coupling in high-speed railway curves. A response surface-based parameter-creepage relationship model was established, and a multi-parameter coordinated optimization strategy was proposed. The research findings provide theoretical guidance for controlling wheel–rail contact fatigue damage and optimizing wheel–rail profiles in high-speed railway curves.
Read full abstract