PurposeAs the impacts of climate change become more evident, the need to adopt new ways of constructing buildings becomes more urgent. The Earth has experienced hotter climates globally for the last 70 years (NASA, 2019), and this has resulted in unprecedented levels of bushfire in Australia, flooding in the UK and drought in Africa in early 2020 (World Resources Institute, 2019). The predictions are for increased temperatures globally and increasing carbon emissions from fossil fuel consumption. There is a critical need to reduce the reliance on fossil fuels as a building energy source (WCED, 1987). Existing renewables focus on solar, wind and wave power, where technological improvements have increased efficiencies (Hinnells, 2008). Uptake of the technologies is variable depending on location and willingness to adopt renewables. As well as further uptake of existing renewable energy sources, we need to look wider and across traditional discipline groups, at new technologies such as biotechnologies. One potential energy source is biofuels. Biofuels are produced from biomass, which is algae. In 2016, the BIQ, a four-storey apartment building, was constructed in Hamburg, Germany. The BIQ features glazed façade panels filled with algae to produce biomass and solar thermal energy. Could algae building technology (ABT), in the form of façade panels, offer a new renewable energy source?Design/methodology/approachWhat are the technical issues associated with Algae building technology? This qualitative research sought to identify what technical issues likely to arise in terms of algae building construction, operation and maintenance. Semi-structured interviews with 24 experienced built environment professionals in Australia were undertaken in 2016 to assess the most likely issues that could arise with this new innovative technology.FindingsAs a result, a greater understanding of the range of technical issues related to design, construction, maintenance and operation were identified, as well as the perceived importance of those issues. It was possible to identify the top ten technical issues built environment professionals are concerned about with regard to ABT. The results can inform future designers of ABT.Research limitations/implicationsThis research was restricted to the views of 24 experienced built environment practitioners in Sydney, Australia. None of whom had direct experience of Algae Building Technology. Though knowledgeable, a greater number of interviews may have identified other technical issues.Practical implicationsNo guidelines exist for Algae Building Technology, and this research identifies a comprehensive range of technical issues that need to be considered for the technology to function at optimum levels. As such, this is a starting point for built environment professionals who may be asked to provide professional advice and guidance.Originality/valueTo date, no evaluation of Australian based built environment professionals has been conducted into the technical issues associated with Algae Building Technology.