The function of a protein is directly coupled to its higher-order structure (HOS). Deviations in this critical quality attribute (CQA) may be linked to a decrease in the efficacy and/or safety of the final therapeutic product. High-resolution nuclear magnetic resonance (NMR) spectroscopy has been recently highlighted for protein HOS characterization, thanks to its ability to capture small changes at the molecular and structural levels (primary, secondary, tertiary and quaternary). The present study was carried out to demonstrate the ability of NMR (1D 1H and 2D 1H-13C experiments) coupled with multivariate data analysis (PCA and PLS regression) to monitor the degradation of a formulated mAb-like protein and for the simultaneous quantification of related CQAs, i.e., potency, purity and impurities (aggregates and fragments). The results indicate that this approach could be applied to mitigate product quality risks during development, manufacturing and stability studies of mAb therapeutics.