Histological descriptions of morphogenesis in human fetal brain and in malformations and tumours can now be supplemented by the timing and sequence of the maturation of individual neurons. In human neuropathology, this is principally achieved by immunocytochemical reactivities used as maturational markers of neuronal properties denoted by molecules and cell products. Cytological markers can appear early and then regress, often being replaced by more mature molecules, or might not exhibit the onset of immunoreactivity until a certain stage of neuronal differentiation is achieved, some early, others intermediate and some late during the maturational process. Inter-specific differences occur in some structures of the brain. The classification of markers of neuronal maturation can be based, in addition to those mentioned above, on several criteria: cytological localisation, water solubility, biochemical nature of the antigen, specificity and various technical factors. The most useful immunocytochemical markers of neuronal maturation in human neuropathology are NeuN, synaptophysin, calretinin and other calcium-binding molecules, various microtubule-associated proteins and chromogranins. Non-antibody histochemical stains that denote maturational processes include luxol fast blue for myelination, acridine orange fluorochrome for nucleic acids, mitochondrial respiratory chain enzymes and argentophilic impregnations. Neural crest derivatives of the peripheral nervous system, including chromaffin and neuroendocrine cells, have special features that are shared and others that differ greatly between lineages. Other techniques used in human diagnostic neuropathology, particularly as applied to tumours, include chromosomal and genetic analyses, the mTOR signalling pathway, BRAF V600E and other tumour-suppressor gene products, transcription products of developmental genes and the proliferation index of the tumour cells and of mitotic neuroepithelial cells.