Variability in speech pronunciation is widely observed across different linguistic backgrounds, which impacts modern automatic speech recognition performance. Here, we evaluate the performance of a self-supervised speech model in phoneme recognition using direct articulatory evidence. Findings indicate significant differences in phoneme recognition, especially in front vowels, between American English and Indian English speakers. To gain a deeper understanding of these differences, we conduct real-time MRI-based articulatory analysis, revealing distinct velar region patterns during the production of specific front vowels. This underscores the need to deepen the scientific understanding of self-supervised speech model variances to advance robust and inclusive speech technology.
Read full abstract