The synthesis of novel, high-yield derivatives of chromenoazepine was investigated in this work. CuO/TiO2@MWCNTs was used as a nanocatalyst in a multicomponent reaction involving 4-aminocumarine, activated acetylenic chemicals, and alkyl bromide in room temperature water to create these novel compounds. Using MCRs of 4-aminocumarine, isothiocyanate, and alkyl bromide in the presence of CuO/TiO2@MWCNTs as nanocatalysts in room-temperature water, chromenothiazepines were synthesized under comparable conditions. The freshly synthesized azepine exhibits antioxidant activity since its NH group has undergone two evaluation processes. Additionally, using two types of Gram-negative bacteria in a disk distribution procedure, the antibacterial activity of recently developed azepines was evaluated, and these compounds also inhibited the growth of Gram-positive bacteria. This method's benefits include quick reaction times, large product yields, and straightforward catalyst and product separation through easy steps.