Flooding is one of the most catastrophic natural disasters in terms of provoking socio-economic losses. The current study is to foster a flood susceptibility map of Krishna District in Andhra Pradesh (AP) through integrating remote sensing data, geographical information system (GIS), and the analytical hierarchy process (AHP). Eleven factors, including elevation, slope, aspect, land use/land cover (LULC), drainage density, topographic wetness index, stream power index, lithology, soil, precipitation, and distance from the streams, are considered for identifying and evaluating the spatial distribution of critical flood-susceptible regions. Thematic maps of different factors were derived in GIS using remote sensing data obtained from Sentinel-2A (satellite sensor), shuttle radar topography mission digital elevation model (SRTM DEM v3), and other scientific data products. An analytical hierarchy process is a mathematical approach for decision support, primarily based on the weight and rank of different causative factors. AHP technique is implemented for flood hazard modeling and ascertaining the Flood Hazard Index (FHI) to produce a flood susceptibility map. Different thematic maps weighed with the AHP framework are combined using overlay analysis to produce the flood susceptibility map of the study region. The outcomes of the study demonstrate the potential of GIS and AHP in providing a premise to recognize the vulnerable areas that are susceptible to flood. According to the findings, the Flood Hazard Index is 42% and the study region is classified into very high, high, moderate, low, and very low susceptible, respectively. Following that, historical flood data was used to validate the accuracy of the generated flood susceptibility map. This shows that a maximum of 90% of the data points are within floodplain.
Read full abstract