Thin layer membranes with controllable features and material arrangements are often used as target materials for laser driven particle accelerators. Reduced cost, large scale fabrication of such membranes with high reproducibility, and good stability are central for the efficient production of proton beams. These characteristics are of growing importance in the context of advanced laser light sources where increased repetition rates boost the need for consumable targets with design and properties adjusted to study the different phenomena arising in ultra-intense laser-plasma interaction. We present the fabrication of sub-micrometric thin-layer gold or aluminum membranes in a silicon wafer frame by using nano/micro-electro-mechanical-system (N/MEMS) processing which are suitable for rapid patterning and machining of many samples at the same time and allowing for high-throughput production of targets for laser-driven acceleration. Obtained targets were tested for laser-proton acceleration through the Target Normal Sheath Acceleration mechanism (TNSA) in a series of experiments carried out on a purpose-made table-top Ti:Sa running at 3 TW peak power and 10 Hz diode pump rate with a contrast over ASE of 108.