Baculoviruses have very large genomes and previous studies have demonstrated improvements in recombinant protein production and genome stability through the removal of some nonessential sequences. However, recombinant baculovirus expression vectors (rBEVs) in widespread use remain virtually unmodified. Traditional approaches for generating knockout viruses (KOVs) require several experimental steps to remove the target gene prior to the generation of the virus. In order to optimize rBEV genomes by removing nonessential sequences, more efficient techniques for establishing and evaluating KOVs are required. Here, we have developed a sensitive assay utilizing CRISPR-Cas9-mediated gene targeting to examine the phenotypic impact of disruption of endogenous Autographa californica multiple nucleopolyhedrovirus (AcMNPV) genes. For validation, 13 AcMNPV genes were targeted for disruption and evaluated for the production of GFP and progeny virus - traits that are essential for their use as vectors for recombinant protein production. The assay involves transfection of sgRNA into a Cas9-expressing Sf9 cell line followed by infection with a baculovirus vector carrying the gfp gene under the p10 or p6.9 promoters. This assay represents an efficient strategy for scrutinizing AcMNPV gene function through targeted disruption, and represents a valuable tool for developing an optimized rBEV genome. KEY POINTS: [Formula: see text] A method to scrutinize the essentiality of baculovirus genes was developed. [Formula: see text] The method uses Sf9-Cas9 cells, a targeting plasmid carrying a sgRNA, and a rBEV-GFP. [Formula: see text] The method allows scrutiny by only needing to modify the targeting sgRNA plasmid.
Read full abstract