The inherent potential to produce plants from microspores or immature pollen exists naturally in many plant species. Some genotypes in hexaploid wheat (Triticum aestivum L.) also exhibit the trait for androgenesis. Under most circumstances, however, an artificial manipulation, in the form of physical, physiological and/or chemical treatment, need to be employed to switch microspores from gametophytic development to a sporophytic pathway. Induced embryogenic microspores, characterized by unique morphological features, undergo organized cell divisions and differentiation that lead to a direct formation of embryoids. Embryoids `germinate' to give rise to haploid or doubled haploid plants. The switch from terminal differentiation of pollen grain formation to sporophytic development of embryoid production involves a treatment that halts gametogenesis and initiates sporogenesis showing predictable cellular and molecular events. In principle, the inductive treatments may act to release microspores from cell cycle control that ensures mature pollen formation hence overcome a developmental block to embryogenesis. Isolated microspore culture, genetic analyses, and studies of cellular and molecular mechanisms related to microspore embryogenesis have yielded useful information for both understanding androgenesis and improving the efficiency of doubled haploid production. The precise mechanisms for microspore embryogenesis, however, must await more research.
Read full abstract