Bacillus thuringiensis is the leading microbial-based biopesticide, thanks to its parasporal crystal proteins or δ-endotoxins, which are toxic to insect larvae upon ingestion. Once in the insect larvae midgut, the crystal is solubilized by the alkaline pH and the δ-endotoxins activated by proteolytic cleavage. Thanks to its high efficiency as a biopesticide, several efforts have been made to enhance its growth and δ-endotoxins production, in various types of culture media. In this study, a culture medium based on wheat bran (WB), the by-product of cereal grain milling, was used to grow Bacillus thuringiensis and produce δ-endotoxins. Using the response surface methodology (RSM), the effects of three variables were evaluated: WB particles granulometry, their concentration, and their agitation in a 48-h shake-flask culture at 30 °C. Three response parameters were targeted: δ-endotoxins production, final culture pH, and dry-matter consumption. According to the RSM results, the optimum would be at 3.7 g WB/50 mL, with a granulometry above 680 μm and agitation between 170 and 270 rpm. This study is key to developing natural and cheap culture media that can be used at an industrial level for Bacillus thuringiensis-based biopesticides.
Read full abstract