Abstract
The sigma-E transcription factor (σETF) can be found in most of the bacteria cells including Bacillus thuringiensis. However, the cellular regulatory mechanisms of these transcription factors in the mass production of δ-endotoxins during sporulation stage are yet to be revealed. In addition, the recognition of DNA towards σETF DNA binding motifs that led to the transcription activities is also being poorly studied. Therefore, this work studied the possible DNA binding motifs of σETF by utilising in silico approaches. The structure of σETF was first built via three different computational methods. A cognate DNA sequence was then docked to the predicted σETF DNA-binding motifs. The binding free energy calculated using molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) for triplicate 50ns simulation of σETF-DNA complex revealed favourable binding energy of DNA to σETF (average ∆Gbind = -34.57kcal/mol) mainly driven by non-polar interactions. This study revealed that σETF LYS131, ARG133, PHE138, TRP146, ARG222, LYS225 and ARG226 are most likely the key residues upon the binding and recognition of DNA prior to transcription actives. Since determination of genome-regulating protein which recognises specific DNA sequence is important to discriminate between the proteins preferences for different genes, this study might provide some understanding on the possible σETF-DNA recognition prior to transcription initiated for the δ-endotoxins production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.