Periodontitis and atherosclerosis are chronic inflammatory diseases characterized by leukocyte infiltration. We investigated the expression of CCL4, CCR5, c-Jun, c-Fos, NF-κB, and CCL2 as well as the possible mechanism involved in the regulation of CCL2 in human periodontitis tissues and atherosclerotic aorta based on previous research on the CCL4/CCR5/c-Jun and c-Fos/CCL2 pathway leading to CCL2 expression in collagen-induced arthritis (CIA) rat. Sixty-five volunteers were recruited and the condition of their gingiva and coronary arteries were assessed. The subjects were divided into four groups: healthy control, chronic periodontitis (CP), coronary artery diseases (CAD), and noncoronary artery diseases (non-CAD). Total RNA was isolated from gingiva in periodontitis patients and control populations and from the aorta in patients with and without CAD. PCR was used to examine CCL4, CCR5, c-Jun, c-Fos, NF-κB, and CCL2 levels. The production of CCL2 in the gingiva and aorta was analyzed by immunostaining. PCR revealed that CCL4, CCR5, and CCL2 mRNA levels were increased in CP patients' gingivae and aortas from coronary artery bypass grafting (CABG) patients. Marked c-Jun, c-Fos, and NF-κB gene productions were detected in CP patients' gingivae but did not show statistical differences between the CAD and non-CAD groups. Stronger immunoreactivity against CCL2 was observed in periodontitis gingiva and aorta from CABG patients. Our findings suggest that the CCL4/CCR5/c-Jun and c-Fos/CCL2 pathways may be involved in CCL2 expression in periodontitis. CCL4, CCR5, and CCL2 might act as possible nodes to link the presence of periodontitis and atherosclerosis.