Abstract

Diet-induced obesity is associated with enhanced systemic inflammation that limits bone regeneration. HDAC inhibitors are currently being explored as anti-inflammatory agents. Prior reports show that myeloid progenitor-directed Hdac3 ablation enhances intramembranous bone healing in female mice. In this study, we determined if Hdac3 ablation increased intramembranous bone regeneration in mice fed a high-fat/high-sugar (HFD) diet. Micro-CT analyses demonstrated that HFD-feeding enhanced the formation of periosteal reaction tissue of control littermates, reflective of suboptimal bone healing. We confirmed enhanced bone volume within the defect of Hdac3-ablated females and showed that Hdac3 ablation reduced the amount of periosteal reaction tissue following HFD feeding. Osteoblasts cultured in a conditioned medium derived from Hdac3-ablated cells exhibited a four-fold increase in mineralization and enhanced osteogenic gene expression. We found that Hdac3 ablation elevated the secretion of several chemokines, including CCL2. We then confirmed that Hdac3 deficiency increased the expression of Ccl2. Lastly, we show that the proportion of CCL2-positve cells within bone defects was significantly higher in Hdac3-deficient mice and was further enhanced by HFD. Overall, our studies demonstrate that Hdac3 deletion enhances intramembranous bone healing in a setting of diet-induced obesity, possibly through increased production of CCL2 by macrophages within the defect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.