The excessive accumulation of heavy metals, particularly lead (Pb) in agricultural soils, is a growing problem worldwide and needs urgent attention. This study aimed to prepare green silicon (Si) NPs using extract of Chenopodium quinoa leaves and evaluated their effects on Pb uptake and growth of maize (Zea mays L.). The results indicated that Pb exposure negatively affected the growth and chlorophyll contents of maize varieties, while SiNPs positively affected these attributes. Pb alone increased the electrolyte-leakage (EL), hydrogen-peroxide (H2O2) and selected antioxidant enzyme activities in leaves, whereas SiNPs decreased EL and H2O2 concentrations and further enhanced the enzyme activities as compared to their respective treatments without SiNPs. Pb-only treatments led to an increase in Pb concentrations and total Pb uptake in both shoots and roots. In contrast, SiNPs resulted in reduced Pb concentrations, with a concurrent decrease in total Pb uptake in shoots compared to the control treatment. The findings demonstrated that foliar application of SiNPs can mitigate the toxic effects of Pb in maize plants by triggering the antioxidant enzyme system and reducing the oxidative stress. Taken together, SiNPs have the potential to enhance maize production in Pb-contaminated soils. However, future research and application efforts should prioritize key aspects such as optimizing NPs synthesis, understanding positive mechanisms of green-synthesized NPs, and conducting multiple crop tests and real-world field trials.