The diurnal variation of surface incident solar radiation (Rs) has a significant impact on the Earth’s climate. Satellite-retrieved Rs datasets display good spatial and temporal continuity compared with ground-based observations and, more importantly, have higher accuracy than reanalysis datasets. Facilitated by these advantages, many scholars have evaluated satellite-retrieved Rs, especially based on monthly and annual data. However, there is a lack of evaluation on an hourly scale, which has a profound impact on sea–air interactions, climate change, agriculture, and prognostic models. This study evaluates Himawari-8 and Clouds and the Earth’s Radiant Energy System Synoptic (CERES)-retrieved hourly Rs data covering 60°S–60°N and 80°E–160°W based on ground-based observations from the Baseline Surface Radiation Network (BSRN). Hourly Rs were first standardized to remove the diurnal and seasonal cycles. Furthermore, the sensitivities of satellite-retrieved Rs products to clouds, aerosols, and land cover types were explored. It was found that Himawari-8-retrieved Rs was better than CERES-retrieved Rs at 8:00–16:00 and worse at 7:00 and 17:00. Both satellites performed better at continental sites than at island/coastal sites. The diurnal variations of statistical parameters of Himawari-8 satellite-retrieved Rs were stronger than those of CERES. Relatively larger MABs in the case of stratus and stratocumulus were exhibited for both hourly products. Smaller MAB values were found for CERES covered by deep convection and cumulus clouds and for Himawari-8 covered by deep convection and nimbostratus clouds. Larger MAB values at evergreen broadleaf forest sites and smaller MAB values at open shrubland sites were found for both products. In addition, Rs retrieved by Himawari-8 was more sensitive to AOD at 10:00–16:00, while that retrieved by CERES was more sensitive to COD at 9:00–15:00. The CERES product showed larger sensitivity to COD (at 9:00–15:00) and AOD (at 7:00–10:00) than Himawari-8. This work helps data producers know how to improve their future products and helps data users be aware of the uncertainties that exist in hourly satellite-retrieved Rs data.